If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+65x=1000
We move all terms to the left:
x^2+65x-(1000)=0
a = 1; b = 65; c = -1000;
Δ = b2-4ac
Δ = 652-4·1·(-1000)
Δ = 8225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8225}=\sqrt{25*329}=\sqrt{25}*\sqrt{329}=5\sqrt{329}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65)-5\sqrt{329}}{2*1}=\frac{-65-5\sqrt{329}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65)+5\sqrt{329}}{2*1}=\frac{-65+5\sqrt{329}}{2} $
| H=288+112x-16x^2 | | -−5x+8=-4x+9 | | 22=2x(x+8) | | 15r−5r−4r−r=15 | | ³/2y=12 | | 2(x+3=14+x | | 3r−r=8 | | -3(m+2)=15 | | 15x+48=10x-18 | | -5s^2+20s-15=0 | | 8y−7y=16 | | 30n-5n^2=0 | | 5w^2-55w+140=0 | | 12x+24+32=8 | | d+7d=16 | | 20z+45=85 | | c=10101+3563 | | 17a-16a=7 | | 4y+18=6(y+4) | | -24.0=-4.0x | | -10(-12-8x)+3=-197 | | u2-256=0 | | 98-2x²=0 | | -7z-8=-10z+4 | | 2-3*5=7*(5y-3) | | x=3.3+x | | 0.6x-0.2(4-x)=4.4 | | -3(2n+1)=15 | | -22=4(4x+6)+6(8x+3) | | 5x*3-1+2*3=0 | | 1/2(6-w)=w | | 1/26-w)=w |